[[../../ACM/数论/威尔逊定理]]
给定 \(n\), 计算
\(\sum_{k=1}^n\left\lfloor\frac{(3k+6)!+1}{3k+7}-\left\lfloor\frac{(3k+6)!}{3k+7}\right\rfloor\right\rfloor\)
思路: 容易想到威尔逊定理
- 若 \(3k+7\) 是质数,则 \((3k+6)!\equiv-1\pmod{3k+7}\)
易得 \((3k+6)!+1=m(3k+7)\)
则 \(\left\lfloor\frac{(3 k+6)!+1}{3 k+7}-\left\lfloor\frac{(3 k+6)!}{3 k+7}\right\rfloor\right\rfloor=\left\lfloor m-\left\lfloor m-\frac{1}{3 k+7}\right\rfloor\right\rfloor=1\)
- 若 \(3k+7\) 不是质数 ,则有 \((3k+7)\mid(3k+6)!\) (由威尔逊定理的推论)
设 \((3k+6)!=k(3k+7)\),
\(\left\lfloor\frac{(3k+6)!+1}{3k+7}-\left\lfloor\frac{(3k+6)!}{3k+7}\right\rfloor\right\rfloor=\left\lfloor k+\frac{1}{3k+7}-k\right\rfloor=0\)
因此
\(\sum_{k=1}^n\left\lfloor\frac{(3k+6)!+1}{3k+7}-\left\lfloor\frac{(3k+6)!}{3k+7}\right\rfloor\right\rfloor=\sum_{k=1}^n[3k+7\text{ is prime}]\)
考虑筛法: [[../../ACM/数论/素数筛法]]
1 |
|